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Introduction

In dermatology and plastic surgery, the use of picosec-
ond laser devices has shown promising results for skin 
surgery, including tattoo removal and treatment of benign 
pigmented lesions and acne scars. 1-5) Irradiation of ul-
tra-short picosecond pulses induces instantaneous heat-
ing of target chromophores in skin tissue and causes 
greater destruction because of the higher peak power 
density, with less damage to the surrounding tissue. Ac-
cordingly, picosecond laser skin treatment is less invasive 
and more effective. 6) Novel picosecond laser devices will 

continue to be applied for clinical use.
	 For the clinical application of a novel laser device, 
preclinical and/or clinical trials are required to evaluate 
the safety and efficacy of the treatment. In laser skin 
treatments, a significant amount of light energy is injected 
from the outside to produce the treatment effect. Howev-
er, there is a risk of injury to areas other than the surgical 
site. Because laser treatments should be performed under 
the condition that the risk is acceptably small, safety eval-
uation is the basis for preclinical and clinical trials. The 
risk evaluation of laser treatments can be evaluated by ex 
vivo and in vivo experiments. 7-9) The trials based on these 
experiments, however, are difficult to evaluate the physi-
cal phenomena induced by ultrashort pulsed light irradia-
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Background and Objectives: Computational clinical trial (CCT) in the field of laser medicine promotes 
clinical application of novel laser devices, because this trial carried out based on numerical modeling of 
laser-tissue interactions and simulation of a series of treatment process. To confirm the feasibility of the 
computational clinical trial of skin treatment with a novel picosecond laser, this paper presents an evalu-
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Study Design/Materials and Methods: In this method, the light propagation and thermal diffusion 
process after ultrashort light pulse irradiation to a numerical skin model is calculated and the safety based 
on the photothermal damage is evaluated by computational modeling and simulation. As an example, the 
safety of a novel picosecond laser device was examined by comparing with several laser devices ap-
proved for clinical use.
Results: The ratio of the maximum thermal damage induced by picosecond laser irradiation was 1.2 × 
10-2 % at the epidermis, while that caused by approved laser irradiation was 99 % at the capillary vessels. 
The numerical simulation demonstrated that less thermal damage was observed compared with the ap-
proved devices. The results show the safety simulated by photothermal damage calculation was consis-
tent with the reported clinical trials.
Conclusions: This computational clinical trial shows the feasibility of applying computational clinical 
trials for the safety evaluation of novel medical laser devices. In contrast to preclinical and clinical tests, 
the proposed computational method offers regulatory science for appropriately and quickly predicting 
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tion during treatment due to the ultrafast phenomena. For 
this reason, the conventional trials have required statisti-
cal evaluations based on comparison of in vivo experi-
ments and clinical studies between a novel device and 
approved devices. 10) The evidences for the safety are pro-
vided by comparing the outcomes at treatment endpoint 
by observing side effects including scaring and burning 
of skin tissue. Furthermore, the processes for such trials 
require massive amounts of time and cost, because a suf-
ficient number of subjects is needed to obtain reliable 
clinical data, and consequently can prevent smooth clini-
cal application. For example, in Japan, some picosecond 
lasers for medical use have been used without regulatory 
approval; as a result, medical malpractices or accidents 
have occurred because of laser irradiation with inappro-
priate parameters. 11) Because this problem presents a bar-
rier for the development and application of epoch-mak-
ing laser devices , a not merely qual i ta t ive and 
reproducible but also quick and cost-effective evaluation 
method of the safety is urgently required.
	 As a third trial in addition to preclinical and clinical 
studies, computational clinical trials evaluate the safety, 
efficacy, quality, and performance of medical devices. 12) 

In computational clinical trials, preclinical and clinical 
tests are carried out by numerical modeling and simula-
tion of a series of treatment process. This trial can offer 
more accurate scientific evidences, because computer 
simulation can reproduce physical phenomena induced 
by laser irradiation to tissue. According to reports by the 
Food and Drug Administration in the USA, computational 
clinical trials are helpful to address and investigate how a 
treatment behaves in many clinically relevant cases, with-
out temporal, financial, or ethical considerations. 13) Al-
though bench testing, animal studies, and clinical trials 
have traditionally been based on relative comparisons of 
the outcomes for approval of the application of medical 
devices, computational clinical trials enable quantitative 
and reproducible evaluation based on the analysis of 
light-tissue interactions. Computational clinical trials can 
exclude individual differences among test subjects, varia-
tions in medical technique by operators in clinical trial 
data, and uncertainty of scientific evidence for extrapola-
tion of animal study data to humans. The use of this trial 
can investigate differences between several laser devices 
in treatment outcomes under the same conditions without 
the unclear conditions including individual differences. 
Once computational clinical trials are established, it can 
bring out huge potential to reduce barriers to the devel-
opment of novel laser devices and facilitate their rapid 
clinical application in medical device field.
	 For the analysis of interactions between light and 
tissue, physical models have been constructed in silico. 
By modeling light propagation in skin tissue, diffuse re-
flectance spectra of tissue can be simulated for quantita-
tive monitoring and localization of chromophores in bio-

logical tissues. The algorithm used in the simulation 
yields results that agree reasonably well with in vivo mea-
surements when a skin model is supplied with reason-
able physical and structural parameters for internal tis-
sues. 14) By modeling the thermal response of tissue, laser 
coagulation of tissue has been simulated. 15, 16) The validity 
of the simulation was verified by comparison with MRI-
based temperature data acquired from in vivo experi-
ments in rabbits. The model simulated temperature distri-
bution and predicted lesion dynamics corresponding 
closely with MRI-based data. 15) By modeling light and 
heat transfer in tissue, photothermal effects, including tis-
sue ablation and coagulation, can be simulated. 17, 18) For 
example, in laser treatment of the prostate, computational 
simulations were performed for analysis of the depen-
dency of tissue ablation and coagulation on irradiation 
parameters. The simulated results were confirmed to fit 
those of physical experiments such as in vivo experi-
ments. 17) As the numerical simulations of light propaga-
tion and thermal diffusion in tissue can reproduce the 
physical phenomena with high accuracy, these simula-
tions have been widely applied to computer simulation 
for the quantitative analysis of laser treatments and 
light-tissue interactions.
	 For the in silico evaluation of interactions between 
a picosecond laser and skin tissue, the physical mecha-
nism during picosecond laser irradiation is required to be 
modeled. The interaction between picosecond laser light 
and skin tissue consists of a combination of photoacous-
tic and photothermal effects 19). In a computer simulation 
related to the interaction, analysis to determine the opti-
mal parameters has been conducted to examine the effi-
cacy by investigating the fragmentation mechanism ac-
companying picosecond laser irradiation. 19) Conversely, 
the quantitative evaluation of photothermal damage in-
duced by picosecond laser irradiation with a computa-
tional method is required to examine the safety.
	 In this paper, we present a computational clinical 
trial to evaluate the safety of treatment with a novel pico-
second laser device by computational modeling and sim-
ulation. With the computational clinical trial, quantitative 
and reproducible evaluation is performed in a short 
amount of time and with low cost. As an example, sup-
posing a 755-nm wavelength picosecond laser device is 
tested for approval in clinical use, the safety can be tested 
by comparison with an approved clinical picosecond la-
ser. Optical penetration depth, temperature rise, and ther-
mal damage rate caused by picosecond pulsed light are 
analyzed numerically as indexes to evaluate the safety. 
From the safety perspective, we confirm that the compu-
tational clinical trial can provide the same results 
achieved by clinical and in vivo trials. 
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Materials and methods

Computational Clinical Trial Model

The computational clinical trial was carried out under 
harsh conditions to evaluate the safety. This computer sim-
ulation assumed that all the absorbed light energy was 
converted to heat energy to calculate the maximum photo-
thermal damage induced by picosecond pulsed light irradi-
ation. The laser device to be evaluated was an alexandrite 
picosecond laser with a wavelength of 755 nm (Device A). 
The approved laser devices for comparison were an alex-
andrite nanosecond laser with a wavelength of 755 nm 
(Device B) and a Nd:YAG picosecond laser with wave-
lengths of 1064 and 532 nm (Device C). Table 1 shows 
the specifications of the picosecond and nanosecond la-
ser devices used in this computational modeling and sim-
ulation. 
	 In this study, the optical penetration depth, tem-
perature rise, and thermal damage rate caused by irradia-
tion to normal skin tissue with Devices A, B, and C were 
compared. Figure 1 describes the steps of the computa-
tional modeling: a Monte Carlo (MC) simulation of light 
propagation, 20) a finite difference method for thermal dif-
fusion calculation, 21) and an Arrhenius model to quantify 
thermal damage. 22) Light propagation in skin tissue is cal-
culated to obtain the deposited energy in skin tissue. The 
MC simulation used in this study assumes linear absorp-
tion process. 20) Nonlinear absorption process such as 
two-photon absorption can occur under irradiation by 
short light pulses (10-9 to 10-12 s). 1) Nonlinear absorption 
process induced by picosecond laser irradiation leads to 
the formation of laser induced breakdown and the subse-
quent creation of plasma above the irradiance threshold 
power density of 1012-1013 W/cm2. 23) The irradiance 
threshold value is more than two orders of magnitude 
higher than the largest power density of the outputs by 
Devices A, B, and C. Then, this paper assumed the non-
linear absorption process is negligible for evaluating the 
devices. In addition, tissue damages by photoacoustic ef-
fects are assumed to be negligible. The largest stress 
wave generation by Device A was estimated as 0.1 MPa 

by referring to Ref. 24, 25. The calculated value is the 
three orders of magnitude smaller than the damage 
threshold of 30 MPa. 26) Here, heat diffusion during one 
pulse irradiation by ultrashort pulsed lasers can be negli-
gible because the thermal confinement condition is satis-
fied. Using this approximation, the thermal diffusion can 
be calculated by setting the initial value of a heat source 
as the absorbed energy distribution after the laser pulse 
irradiation. From the calculated spatial distribution of the 
temperature rise, the ratio of thermal damage can be cal-
culated. The degree of thermal damage depends on the 
temperature of skin tissue and the exposure time at that 
temperature. 27, 28) 

Three-dimensional Numerical Skin Tissue Model

For execution of the computational clinical trial, a 

Device A Device B Device C

Wavelength 755, 532 nm 755 nm 1064, 532 nm

Pulse width 550-750 ps 50-100 ns 750 ps, 2 ns

Spot shape 1.5, 2-6, 8, 10 mm (k) 2, 3, 4, 5, 6 mm (φ) 2, 3, 4, 5, 6, 7, 8 mm (φ)

Fluence 0.21-6.37 J/cm2 1.6-18 J/cm2 0.2-10, 0.2-2.5 J/cm2

Repetition rate Single, 1, 2.5, 5, 10 Hz Single, 1, 2, 5, 10 Hz Single, 1, 2, 3.3, 5, 10 Hz

Table 1: ‌Specifications of Laser Devices Numerically Evaluated in This Computational Clinical Trial.

Fig. 1: ‌�Schematic diagram of the computational 
modeling and simulation of light and heat 
transfer. After creating a numerical skin geometry 
model, light propagation in the skin model is 
calculated with optical properties to produce 
spatial distribution of energy deposition S(x,y,z). 
By using the absorbed energy distribution as the 
initial value of a heat source, thermal diffusion is 
analyzed to produce temperature distribution 
T(x,y,z,t). From the calculated spatiotemporal 
temperature change, a spatial distribution of 
thermal damage rate in the skin model is derived 
numerically.
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three-dimensional numerical skin tissue model was con-
structed, having a flat and multi-layered structure. The ef-
fect on normal skin tissue of picosecond laser irradiation 
was considered to evaluate the safety. As seen in Fig. 2, 
the skin model was composed of epidermis, dermis, and 
subcutaneous fat. The dermis layer included three differ-
ent sizes of blood vessels; capillary vessels, upper dermis 
vessels, and deep dermis vessels. The skin tissue model 
was constructed with a cube voxel of 500 × 500 × 400 ele-
ments. The voxel size was 0.01 × 0.01 × 0.01 mm3. The 
depth direction of the skin model was along the z axis. 
The skin surface was set as z = 0 mm. The plane vertical 
to the z axis was defined as the xy plane. The xy plane 
center of the three-dimensional skin tissue model was (x, 
y) = (0 mm, 0 mm). For the comparative evaluation be-
tween Device A and Devices B and C, the layer thickness-
es of epidermis, dermis, and subcutaneous fat were set as 
the mean values of 0.1, 1.1, and 2.8 mm, respectively. 29) 
Each voxel was assigned an absorption coefficient, scatter-
ing coefficient, and anisotropy factor for Caucasian peo-
ple, corresponding to wavelength and tissue type as listed 
in Table 2. The absorption coefficients of dermis and 
subcutaneous fat were bloodless parameters. The param-

eters of blood vessels in the skin model were set as 
shown in Table 3. 41) The capillary plexus was 150 μm in 
thickness. The upper dermis blood vessels and the deep 
dermis blood vessels lined at a depth of 290 and 1160 
μm, respectively. The number of vessels was calculated 
based on the volume fractions of blood. The numbers of 
capillary vessels, upper dermis vessels, and deep dermis 
vessels were 382, 61, and 9, respectively.

Light Propagation Calculation

To obtain the distribution of photons deposited in skin 
tissue, a Monte Carlo (MC) program named mcxyz devel-
oped by S. L. Jacques et al. at the Oregon Medical Laser 
Center was adopted for this study. 20, 42) This model uses a 
statistical approach using random numbers to model light 
transfer in tissue, where photons experience absorption 
and scattering events. This model is able to calculate light 
propagation through skin tissue layer having complex 
structure including cylindrical structures of blood vessels. 
In this study, laser was irradiated from the top surface of 
skin tissue vertically as a uniform beam to simulate the 
actual irradiation conditions during a treatment session. 
The light wavelength was set to 532, 755, or 1064 nm, ac-
cording to the specifications of the laser devices. The MC 
simulation was carried out for 12,000,000 photons to 
achieve a sufficient distribution of light absorbed by the 
skin tissue.

Thermal Diffusion Calculation

The temperature variation by absorption of the pulsed 
light is determined by the heat capacity and thermal con-
ductivity of the skin tissue model, and the heat is diffused 
at a speed proportional to the temperature gradient. This 
diffusion promotes an increase in the temperature of nor-
mal tissues around the surgical site and can cause cell ne-
crosis and protein coagulation. 43) In this study, combined 
with the internal heat generated from the light energy ab-
sorption calculated by the MC simulation, the time varia-
tion of temperature distribution in the skin tissue was ob-
tained using the three-dimensional heat conduction 
equation: 21)

ρc ∂T = k∇2T + S,
∂t 

where ρ [g/cm3] is the density of each tissue type in the 
skin model, c [ J/(g•K)] is the specific heat of each tissue 
type in the skin model, k [W/(cm•K)] is the thermal con-
ductivity of each tissue type in the skin model, and S [W/
cm3] is the internal heat source, as shown in Table 2. The 
heat source term was present only during laser pulse irra-
diation. This equation was solved with the finite differ-
ence technique. 
	 Adiabatic boundary conditions were applied to 
boundaries at z = 4.0 mm and x, y = ± 2.5 mm. The con-
vective surface boundary condition at the border of air 
and skin tissue was applied. 	

Fig. 2: ‌� (a) Three-dimensional structure of skin model 
and (b) its zx plane cut, consisting of epidermis, 
dermis, subcutaneous fat, and three kinds of 
blood vessels (capillary vessels, upper dermis 
vessels, and deep dermis vessels).
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-k ∂T    =h(Tair - Tsurface),
∂z|

z=0

where h is the heat transfer coefficient between the skin 
surface and the air, equal to 0.001 [W/(cm2•K)], 44) Tair is 
the temperature at air [°C], and Tsurface is the temperature 
at the surface of the skin model [°C]. The initial tempera-
tures of the skin model and air were set to 32 and 24 °C, 
respectively. The temporal step size during and after laser 
irradiation were one hundredth of a pulse width and 10 
nanoseconds, respectively.

Thermal Damage Calculation

Thermal damage depends on not only the temperature of 
the tissue, but also the duration of time at that tempera-
ture. 27, 28) In this study, the Arrhenius model was used to 
quantify thermal damage to the skin model using experi-
mentally derived parameters (frequency factor, A and ac-
tivation energy, Ea). This model is based on a unimolecu-
lar formulation of the standard rate process model of 
tissue damage in chemical kinetics. This model can be 

Epidermis Dermis Subcutaneous fat Blood

Optical properties

λ = 532 nm 30-33)

Absorption coefficient (μa) [cm-1] 14.3 0.527 0.9 100

Scattering coefficient (μs) [cm-1] 605 388 314 295

Anisotropy factor (g) [-] 0.9

λ = 755 nm 30, 31, 33, 34)

Absorption coefficient (μa) [cm-1] 4.55 0.254 0.09 3

Scattering coefficient (μs) [cm-1] 394 238 217 321

Anisotropy factor (g) [-] 0.9

λ = 1064 nm 30,31,33,35)

Absorption coefficient (μa) [cm-1] 1.61 0.244 0.5 2

Scattering coefficient (μs) [cm-1] 291 177 169 250

Anisotropy factor (g) [-] 0.9

Thermal properties 36-40)

Thermal conductivity (k) [×10-3 W/(cm•K)] 2.09 3.00 2.05 4.92

Specific heat (c) [ J/(g•K)] 3.60 3.22 2.30 3.84

Density (ρ) [g/cm3] 1.19 1.12 0.97 1.00

Damage parameters 22)

Frequency factor (A) [1/s] 8.82×1094 (T ≤ 53°C), 1.297×1031 (T > 53°C)

Activation energy (Ea) [ J/mol] 6.028×105 (T ≤ 53°C), 2.04×105 (T > 53°C)

Gas constant (R) [ J/(mol•K)] 8.314

Table 2: ‌�Optical and Thermal Properties and Damage Parameters for 
Computational Modeling and Simulation of Laser Irradiation.

Depth [μm] Volume fraction [%] Diameter [μm]

Capillary vessel 175 4 10

Upper blood net plexus 290 30 50

Deep blood net plexus 1160 10 80

Table 3: Parameters for Blood Vessels.
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used to predict the probability of irreversible thermal 
damage and to calculate a non-dimensional damage pa-
rameter Ω from 

Ω(τ) = ln {C(0) } = A∫
τ exp {-   Ea  } dt,

C(τ)        0          RT(t)

where C(t) is the remaining concentration of undamaged 
tissue at exposure time t [s], A [1/s] is the frequency fac-
tor, Ea [ J/mol] is the activation energy for denaturation of 
molecules, and R [ J/(mol•K)] is the gas constant, as 
shown in Table 2. The concentration ratio of the dam-
aged tissue to the undamaged tissue at exposure time τ 
[s] was expressed using the damage parameter Ω with the 
following equation 22):

Damage [%] = 100[1 - exp{-Ω(τ)} ].

In this study, the thermal damage of 63.2 % (Ω ≥ 1) was 
applied as the threshold for irreversible thermal damage, 
including cell necrosis and protein coagulation.

Irradiation Conditions

The laser irradiation conditions for the three devices are 
summarized in Table 4. Severe conditions indicate the 
conditions providing the maximum fluence in the specifi-
cation, as can be seen in Table 1. Clinical conditions in-
dicate the typical conditions used in a clinical laser tattoo 
removal procedure. 10, 46) The spot shape of Device A was 
square, while those of Devices B and C were circular. 
The repetition rates were set at 10 Hz. The thermal diffu-
sion process by one light pulse irradiation was analyzed 

Severe conditions Clinical conditions

Device A Device B Device C Device A Device B Device C

Wavelength [nm] 755 755 1064 532 755 755 1064 532

Pulse width [ns] 0.5 50 0.75 0.5 50 0.75

Spot shape [mm]  2 (k) 2 (φ) 2 (φ) 3 (k) 3 (φ) 3 (φ)

Fluence [J/cm2] 6.37 18 10 2.5 2.83 10 4.6 1.65

Repetition rate [Hz] 10

Cooling None

Table 4: Simulation Conditions of Short Pulsed Laser Irradiation.

Fig. 3: ‌�Spatial distributions of (a) light fluence and (b) energy deposition in the skin model on the zx 
plane after laser pulse irradiation with (i) Device A (755 nm, 2 mm k, 6.37 J/cm2), (ii) Device 
B (755 nm, 2 mm φ, 18 J/cm2), (iii) Device C (1064 nm, 2 mm φ, 10 J/cm2), and (iv) Device C 
(532 nm, 2 mm φ, 2.5 J/cm2) under severe conditions.
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for 100 ms to compare Device A with Devices B and C. 
Because the repetition rates were the largest in their 
specifications, the temperature rise and the thermal dam-
age were evaluated under severe conditions. Cooling 
during laser irradiation was not considered in this study.

Results

Light Propagation in the Skin Model

Because the depth that light penetrates into tissue de-
pends on the wavelength, the optical penetration depth 
was evaluated. The optical penetration depth was defined 
as the depth at which the distributed light fluence inside 
the skin model falls to 1/e (36.8 %) of its original fluence 
at the surface. Figure 3 (a) shows the spatial distribution 
of fluence. The light pulse delivered at the skin surface 
disperses radially into a distributed fluence. Figure 3 (b) 
shows the energy deposition in the skin model. Light en-
ergy was absorbed strongly in the epidermis layer and 
the blood vessels in the dermis layer. Figure 4 indicates 
the optical penetration depth after ultrashort pulsed laser 
irradiation. The optical penetration depth with Device A 
was 0.85 mm, while the depths with Device B, Device C 
with a wavelength of 1064 nm (Device C (λ = 1064 nm)), 
and Device C with a wavelength of 532 nm (the Device C 
(λ = 532 nm)) were 0.82, 0.86, and 0.51 mm. The optical 
penetration depth with Device A was positioned between 
the depths resulting from Device C (λ = 1064 nm) and 
Device C (λ = 532 nm). The optical penetration depth 
with Device A was revealed to be the same as that of De-
vice C. Figure 5 shows the energy deposition on the z 
axis after ultrashort pulsed laser irradiation. Laser irradia-
tion with Device B delivered more energy to the layer of 
subcutaneous fat than did Device A. Even though the op-
tical penetration depth with Device A was larger than that 

with Device B, Device A was safer because more energy 
was deposited with Device B. Therefore, the optical pen-
etration depth with Device A was confirmed to be equiv-
alent to those of Devices B and C.

Temperature Rise

The time variation of temperature profiles on the z axis 
for 100 ms after laser irradiation are shown in Fig. 6. Im-
mediately after laser irradiation with Devices A, B, and C, 
temperature peaks were found at the epidermis, the cap-

Fig. 6: ‌�Time variations of temperature profiles in the skin 
model for 100 ms after laser pulse irradiation with 
(a) Device A (755 nm, 2 mm k, 6.37 J/cm2), (b) 
Device B (755 nm, 2 mm φ, 18 J/cm2), (c) Device 
C (1064 nm, 2 mm φ, 10 J/cm2), and (d) Device C 
(532 nm, 2 mm φ, 2.5 J/cm2) under severe 
conditions.

Fig. 4: ‌�Optical penetration depth after laser pulse 
irradiation under severe conditions.

Fig. 5: ‌�Energy deposition profiles in the skin model on 
the z axis with x and y equal to 0 mm after laser 
pulse irradiation under severe conditions.
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illary vessels, the upper dermis vessels, and the deep der-
mis vessels. The total light energy was incident, and the 
temperatures were maximum during the pulse irradia-
tions. After 100 ms, the temperature peaks at the blood 
vessels nearly disappeared as a result of thermal diffu-
sion. Although the temperature peak at the epidermis be-
came smooth, the peak was still higher than that before 
laser irradiation. Figure 7 shows the maximum tempera-
ture of each tissue type in the skin model under ultra-
short pulsed laser irradiation. Under severe conditions, 
the maximum temperature of each tissue type after laser 
irradiation with Device A was not the largest compared 
with Devices B and C. Moreover, except at the epidermis 
layer, the maximum temperature of each tissue type un-
der severe conditions with Device A was lower than that 
determined under clinical conditions with Devices B and 
C. Therefore, the temperature rise with Device A was 
confirmed not to be inferior to those of Devices B and C.

Concentration Ratio of Thermally Damaged Tis-
sue

In the thermal damage calculations, heat diffusion data 
are converted into thermal damage using the Arrhenius 
model because the degree of photothermal damage is de-
termined by the temperature and the exposure time at 
that temperature. In particular, the peak temperature 
achieved in each target tissue shown in Fig. 7 dominated 
the Arrhenius thermal damage calculation. After 100 ms, 
the peaks of the thermal damage rate were found at the 

epidermis, the capillary vessels, and the upper dermis 
vessels. The maximum ratio of thermal damage with De-
vice A was 1.2×10-2 % at most in the layer of epidermis, 
while those with Devices B and C (λ = 1064 nm) were 42 
and 7.5 × 10-6 %, respectively in the layer of epidermis, 
and that with Device C (λ = 532 nm) was 99 % at capil-
lary vessels. The thermal damage rates with Device A 
were much smaller than the damage threshold of 63.2 %. 
Therefore, thermal damage with Device A was confirmed 
to be equivalent to that with Devices B and C.

Discussion

Devices B and C used for comparison have been ap-
proved for clinical use and several clinical studies have 
already confirmed their safety in respect of thermal dam-
age. 10, 45) Although Device A has not yet been approved 
in Japan at the present moment, several clinical experi-
mental studies have reported that skin treatments by De-
vice A has less side effects caused by thermal damage 
than nanosecond laser skin treatments. 46-48) This simula-
tion results demonstrated that the safety of Device A was 
noninferior to that of Devices B and C in terms of ther-
mal damage, which had consistency with the reported 
experimental results. In general, clinical trials and in vivo 
studies of novel laser devices require a time-consuming 
process and a sufficient number of cases, ranging from 
5-25. 10, 46, 49-53) In these cases, outcomes at the endpoint of 
treatment are provided as evidence supporting safety and 

Fig. 7: ‌�Maximum temperature after laser pulse irradiation in (a) epidermis, (b) dermis, (c) capillary 
vessels, (d) upper dermis vessels, (e) deep dermis vessels, and (f) subcutaneous fat.
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efficacy. In this paper, however, a computational trial 
completed the evaluation using a computer in a shorter 
amount of time. These simulated results did not include 
variations in operation technique by physicians because 
the light pulse irradiation was performed under the same 
conditions. Computational modeling and simulation in-
vestigates interactions based on the physical mechanism 
during laser irradiation to tissue with high accuracy, 
which indicates that the phenomena during treatment are 
analyzed. This aspect enables computational clinical trials 
to offer quantitative and reproducible evaluation. The trial 
shows that it is feasible to apply computational clinical 
trials for the safety evaluation of novel medical laser de-
vices.
	 In the numerical calculation, the MC simulation as-
sumed the linear absorption of the picosecond laser 
pulse in skin tissue. Picosecond laser irradiation, howev-
er, can also induce nonlinear absorption due to the high 
power density, which affects calculation of light distribu-
tion and energy deposition of skin tissue. Light propaga-
tion model with nonlinear absorption will improve the 
accuracy of quantitative evaluation for the picosecond la-
ser effects on skin tissue. 54) The safety of a novel picosec-
ond laser was evaluated based on photothermal damage. 
The damage was acute and present immediately after the 
interaction between a laser device and skin tissue. Actual-
ly, as another laser-tissue interaction, ultrashort pulse irra-
diation of tissue produces a thermoelastic effect because 
of instantaneous thermal tissue expansion. However, in 
this simulation, it was assumed that all light energy was 
translated into heat to calculate the maximum photother-
mal damage. In this computational clinical trial, tempera-
ture is a required parameter for modeling after light ab-
sorption in a skin model because this trial considered 
acute damage. The calculation of temperature can be 
computationally reproduced using the three-dimensional 
heat conduction equation precisely. In addition, using nu-
merical simulation is standard for evaluating thermal 
damage because a parameter needed for simulation, such 
as a threshold for irreversible thermal damage, has al-
ready been obtained. 55) Therefore, the safety was evaluat-
ed with high accuracy by calculating the temperature rise 
and thermal damage in the geometrical model represent-
ing normal skin tissue under both conditions of evaluated 
devices.
	 Comparing Fig. 6 (a) and (b), the shape of the 
temperature profiles is similar, while the degree is differ-
ent. Under the simulated conditions, Devices A and B 
had the same wavelength, but the compared pulse width 
and fluence were different. The thermal diffusion coeffi-
cients α = k/ρc for epidermis, dermis, and subcutaneous 
fat in the skin model were 4.88×10-4, 8.32×10-4, and 
9.19×10-4 cm2/s, respectively. The pulse width that satis-
fied the thermal confinement condition was represented 
by τ = d2/4α, where d indicates the thickness. τ values 

for each layer were 0.051, 3.6, and 21.3 s, respectively. 
Because the simulated pulse width was much shorter 
than τ, the condition was satisfied. Therefore, fluence had 
a more pronounced effect on temperature rise than did 
pulse width. 
	 As can be seen in Fig. 6, the temperature after 100 
ms was higher than the initial temperature of 32 °C for 
both conditions. Compared to Device B or C, Device A 
obtained smaller heat accumulation, which suggested that 
thermal damage induced by Device A are also estimated 
smaller in case of repeated irradiation at 10 Hz. Continu-
ous pulse irradiation at the same place can cause exces-
sive temperature rise because of heat accumulation. For 
this reason, it may be required to avoid continuous pulse 
irradiation at the same place, to provide a sufficient inter-
val between pulsed light incidence, and to cool the skin 
tissue under operation.
	 In the numerical simulation, the thermal damages of 
Devices A, B, and C were compared using the same skin 
tissue model. Thicknesses of epidermis, dermis and sub-
cutaneous fat, however, vary individually and site-de-
pendently in actual. 29) Constructing a skin tissue models 
with these variances will improve the clinical applicability 
in future. This computational modeling and simulation 
overestimated the temperature rise and the thermal dam-
age because of some following assumptions. First, the dy-
namics of the optical properties of skin tissue resulting 
from the temperature rise were not considered in the 
thermal diffusion calculation. Some references report that 
when tissue is thermally coagulated, optical penetration 
depth becomes smaller and more light energy is deposit-
ed around the surface. 56-58) This suggest that thermal 
damage is moderated around the surface and becomes 
more severe with increased depth. Thereby, not consider-
ing the dynamic optical properties results in overestima-
tion of the temperature rise and thermal damage. More-
over, the optical properties vary between races 30). 
Because of these racial differences, the degree of thermal 
damage can change. For example, when the absorption 
coefficient is doubled, the same amount of deposited en-
ergy theoretically can be obtained with half of the light 
fluence. Caucasian optical properties were applied in this 
simulation, and the safety evaluation of a laser device 
considering racial differences may be necessary. Second, 
because the cooling effect of blood perfusion was not in-
cluded in the thermal diffusion calculation, the tempera-
ture rise was overestimated in the skin model. It is known 
that the cooling effect resulting from vasculature causes a 
change in temperature distribution and reduces the range 
of tissue where thermal damage is induced. 59) However, 
the knowledge of physical properties has not been accu-
mulated sufficiently to reproduce the cooling effect by 
computer. Experimental analysis will require an appropri-
ate design to model the cooling effect resulting from 
blood flow.
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	 It is desirable to conduct the performance evalua-
tion of laser devices with exhaustive combinations of pa-
rameters such as pulse width, spot shape, fluence, and 
repetition rate using an actual method. Compared with 
the traditional preclinical and clinical trials, computational 
modeling and simulation can complete tests rapidly and 
inexpensively by a simple operation of only setting pa-
rameters on a computer. Moreover, it can obtain data that 
is unmeasurable in traditional tests by simulating the per-
formance of devices under arbitrary irradiation condi-
tions, including clinically challenging conditions. Al-
though the safety was only evaluated based on the 
photothermal effect when light pulses were irradiated on 
normal skin tissue, it is expected that a computational 
clinical trial can be applied to the efficacy evaluation of a 
novel laser device by designing modeling and simulation 
considering photoacoustic effects in skin models includ-

ing tattoo particles and melanin.

Conclusions

The temperature rise and the thermal damage to skin tis-
sue caused by picosecond laser irradiation were quantita-
tively evaluated by a computational clinical trial. The 
safety evaluation of a novel picosecond laser was carried 
out by comparison with picosecond and nanosecond la-
ser devices already approved for medical use. In contrast 
to traditional preclinical and clinical studies, the proposed 
computational method leads to cost and time reduction 
for examination of novel laser devices. The accumulation 
of clinical data and physical parameters with high accura-
cy will improve the reliability of computational clinical 
trials and assist their development to serve as supporting 
evidence in medical device evaluation.
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