Photo-disinfection of orthodontic brackets contaminated with Lactobacillus acidophilus with blue laser

Submitted: 18 August 2024
Accepted: 12 October 2024
Published: 13 November 2024
Abstract Views: 513
PDF: 141
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Decontamination of teeth with Chlorhexidine (CHX) in the treatment of dental disease is associated with some concerns. The objective of the current study was to ascertain whether the Blue Diode Laser (BDL), as a new approach in combination with riboflavin and curcumin as photosensitizers, would have any impact on the number of Lactobacillus acidophilus around orthodontic brackets. A total of 36 orthodontic brackets were contaminated with L. acidophilus and categorized into six different groups, including the negative control, riboflavin alone or riboflavin + BDL with a radiant power of 500 mW, and curcumin alone or curcumin + BDL with a radiant power of 500 mW, and 0.2% CHX as positive control. Orthodontic brackets were irradiated with a BDL (wavelength of 450 nm) and radiant exposure of 30 J/cm2 for 30 s. Colony-forming units per milliliter (CFUs/ml) were determined. One-way Analysis Of Variance (ANOVA) followed by Tukey’s post-hoc tests were performed to compare CFU/ml between groups. All groups were better at eliminating L. acidophilus around orthodontic brackets than the negative control group, but this was not significant for riboflavin alone. The curcumin groups were more effective than the riboflavin groups at reducing CFU/ml of L. acidophilus. In addition, CHX was able to completely eliminate the colonies of L. acidophilus (p <0.0001). This study showed that curcumin and riboflavin plus BDL significantly reducedthe amounts of L. acidophilus around the orthodontic brackets.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

1. Cruz CL, Edelstein BL. Linking orthodontic treatment and caries management for high-risk adolescents. Am J Orthod Dentofacial Orthop 2016;149:441-2. DOI: https://doi.org/10.1016/j.ajodo.2015.12.007
2. Jin LJ, Lamster IB, Greenspan JS, et al. Global burden of oral diseases: emerging concepts, management and interplay with systemic health. Oral Dis 2016;22:609-19. DOI: https://doi.org/10.1111/odi.12428
3. Choi YY. Relationship between orthodontic treatment and dental caries: results from a national survey. Int Dent J 2020;70:38-44. DOI: https://doi.org/10.1111/idj.12515
4. Pitts NB, Zero DT, Marsh PD, et al. Dental caries. Nat Rev Dis Primers 2017;3:17030. DOI: https://doi.org/10.1038/nrdp.2017.30
5. Liang J, Zhou Y, Tang G, et al. Exploration of the main antibiofilm substance of Lactobacillus plantarum ATCC 14917 and its effect against Streptococcus mutans. Int J Mol Sci 2023;24:1986. DOI: https://doi.org/10.3390/ijms24031986
6. Ahirwar SS, Gupta M, Snehi SK: Dental caries and lactobacillus: Role and ecology in the oral cavity. Int J Pharm Sci Res 2019;11:4818-29.
7. Hassanzadazar H, Ehsani A, Mardani K, Hesari J. Investigation of antibacterial, acid and bile tolerance properties of lactobacilli isolated from Koozeh cheese. Vet Res Forum 2012;3:181-5.
8. Rajesh S, Koshi E, Philip K, Mohan A. Antimicrobial photodynamic therapy: An overview. J Indian Soc Periodontol 2011;15:323-7. DOI: https://doi.org/10.4103/0972-124X.92563
9. Petersson LG: The role of fluoride in the preventive management of dentin hypersensitivity and root caries. Clin Oral Investig 2013;17:63-71. DOI: https://doi.org/10.1007/s00784-012-0916-9
10. Pałka L, Nowakowska-Toporowska A, Dalewski B. Is chlorhexidine in dentistry an ally or a foe? A narrative review. Healthcare 2022;10:764. DOI: https://doi.org/10.3390/healthcare10050764
11. Strazzi-Sahyon HB, de Oliveira MS, da Silva PP, et al. Does photodynamic therapy with methylene blue affect the mechanical properties and bond strength of glass-fiber posts in different thirds of intraradicular dentin? Photodiagnosis Photodyn Ther 2020;30:101673. DOI: https://doi.org/10.1016/j.pdpdt.2020.101673
12. Alrahlah A, Niaz MO, Abrar E, et al. Treatment of caries affected dentin with different photosensitizers and its effect on adhesive bond integrity to resin composite. Photodiagnosis Photodyn Ther 2020;31:101865. DOI: https://doi.org/10.1016/j.pdpdt.2020.101865
13. Al Ahdal K, Al Deeb L, Al-Hamdan RS, et al. Influence of different photosensitizers on push-out bond strength of fiber post to radicular dentin. Photodiagnosis Photodyn Ther 2020;31:101805. DOI: https://doi.org/10.1016/j.pdpdt.2020.101805
14. Alkhudhairy F, Vohra F, Naseem M, Ahmad ZH. Adhesive bond integrity of dentin conditioned by photobiomodulation and bonded to bioactive restorative material. Photodiagnosis Photodyn Ther 2019;28:110-13. DOI: https://doi.org/10.1016/j.pdpdt.2019.08.014
15. Reis ACM, Regis WFM, Rodrigues LKA. Scientific evidence in antimicrobial photodynamic therapy: An alternative approach for reducing cariogenic bacteria. Photodiagnosis Photodyn Ther 2019;26:179-89. DOI: https://doi.org/10.1016/j.pdpdt.2019.03.012
16. de Oliveira AB, Ferrisse TM, Marques RS, et al. Effect of photodynamic therapy on microorganisms responsible for dental caries: A systematic review and meta-analysis. Int J Mol Sci 2019;20:3585. DOI: https://doi.org/10.3390/ijms20143585
17. Karimi MR, Hasani A, Khosroshahian S. Efficacy of antimicrobial photodynamic therapy as an adjunctive to mechanical debridement in the treatment of peri-implant diseases: A Randomized Controlled Clinical Trial. J Lasers Med Sci 2016;7:139-45. DOI: https://doi.org/10.15171/jlms.2016.24
18. Fawzy AS, Nitisusanta LI, Iqbal K, et al. Riboflavin as a dentin crosslinking agent: Ultraviolet A versus blue light. Dent Mater 2012;28:1284-91. DOI: https://doi.org/10.1016/j.dental.2012.09.009
19. Araújo NC, Fontana CR, Bagnato VS, Gerbi ME. Photodynamic effects of curcumin against cariogenic pathogens. Photomed Laser Surg 2012;30:393-9. DOI: https://doi.org/10.1089/pho.2011.3195
20. Cusicanqui Méndez DA, Gutierres E, José Dionisio E, et al. Curcumin-mediated antimicrobial photodynamic therapy reduces the viability and vitality of infected dentin caries microcosms. Photodiagnosis Photodyn Ther 2018;24:102-08. DOI: https://doi.org/10.1016/j.pdpdt.2018.09.007
21. Fornaini C, Merigo E, Rocca J-P, et al. 450 nm Blue Laser and Oral Surgery: Preliminary ex vivo Study. J Contemp Dent Pract 2016;17:795-800. DOI: https://doi.org/10.5005/jp-journals-10024-1933
22. Afrasiabi S, Chiniforush N. Antibacterial potential of riboflavin mediated blue diode laser photodynamic inactivation against Enterococcus faecalis: A laboratory investigation. Photodiagnosis Photodyn Ther 2023;41:103291. DOI: https://doi.org/10.1016/j.pdpdt.2023.103291
23. Astuti SD, Hafidiana, Rulaningtyas R, et al. The efficacy of photodynamic inactivation with laser diode on Staphylococcus aureus biofilm with various ages of biofilm. Infect Dis Rep 2020;12:8736. DOI: https://doi.org/10.4081/idr.2020.8736
24. Dragana R, Jelena M, Jovan M, Biljana N, Dejan M: Antibacterial efficiency of adjuvant photodynamic therapy and high-power diode laser in the treatment of young permanent teeth with chronic periapical periodontitis. A prospective clinical study. Photodiagnosis Photodyn Ther 2023;41:103129. DOI: https://doi.org/10.1016/j.pdpdt.2022.103129
25. Araújo NC, de Menezes RF, Carneiro VSM, et al. photodynamic inactivation of cariogenic pathogens using curcumin as photosensitizer. Photomed Laser Surg 2017;35:259-63. DOI: https://doi.org/10.1089/pho.2016.4156
26. Paschoal MA, Lin M, Santos-Pinto L, Duarte S. Photodynamic antimicrobial chemotherapy on Streptococcus mutans using curcumin and toluidine blue activated by a novel LED device. Lasers Med Sci 2015;30:885-90. DOI: https://doi.org/10.1007/s10103-013-1492-1
27. Merigo E, Conti S, Ciociola T, et al. Antimicrobial photodynamic therapy protocols on Streptococcus mutans with different combinations of wavelengths and photosensitizing dyes. Bioengineering (Basel) 2019;6:42. DOI: https://doi.org/10.3390/bioengineering6020042
28. Araújo NC, Fontana CR, Bagnato VS, Gerbi ME. Photodynamic antimicrobial therapy of curcumin in biofilms and carious dentine. Lasers Med Sci 2014;29:629-35. DOI: https://doi.org/10.1007/s10103-013-1369-3
29. Moradi M, Fazlyab M, Pourhajibagher M, Chiniforush N. Antimicrobial action of photodynamic therapy on Enterococcus faecalis biofilm using curing light, curcumin and riboflavin. Aust Endod J 2022;48:274-82. DOI: https://doi.org/10.1111/aej.12565
30. Dovigo LN, Pavarina AC, Ribeiro APD, et al. Investigation of the photodynamic effects of curcumin against Candida albicans. Photochem Photobiol 2011;87:895-903. DOI: https://doi.org/10.1111/j.1751-1097.2011.00937.x
31. Dovigo LN, Pavarina AC, Carmello JC, et al. Susceptibility of clinical isolates of Candida to photodynamic effects of curcumin. Lasers in Surgery and Medicine 2011;43:927-34. DOI: https://doi.org/10.1002/lsm.21110
32. Dąbrowski JM. Chapter Nine - Reactive Oxygen species in photodynamic therapy: mechanisms of their generation and potentiation. Adv Inorg Chem 2017;70:343-94. DOI: https://doi.org/10.1016/bs.adioch.2017.03.002
33. Abrahamse H, Hamblin Michael R. New photosensitizers for photodynamic therapy. Biochem J 2016;473:347-64. DOI: https://doi.org/10.1042/BJ20150942
34. Kamran MA, Qasim M, Udeabor SE, et al. Impact of riboflavin mediated photodynamic disinfection around fixed orthodontic system infected with oral bacteria. Photodiagnosis Photodyn Ther 2021;34:102232. DOI: https://doi.org/10.1016/j.pdpdt.2021.102232

How to Cite

Pordel, E., Ghasemi, T., Benedicenti, S., Solimei, L., Chiniforush, N., & Afrasiabi, S. (2024). Photo-disinfection of orthodontic brackets contaminated with <i>Lactobacillus acidophilus</i> with blue laser. Laser Therapy, 31(2). https://doi.org/10.4081/ltj.2024.404