Spectra of pathogens predict lethality of blue light photo-inactivation

Submitted: 11 January 2023
Accepted: 24 April 2023
Published: 18 May 2023
Abstract Views: 2303
PDF: 23
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Whole-cell spectra of human pathogens are examined to identify species-specific wavelengths of maximum light absorption. It is presented how these data relate to clinical efficacy for antimicrobial phototherapies. Twelve species of microorganisms were cultured to exponential growth then processed and suspended in a scattering solution. Diffuse reflectance from the sample was delivered to two spectrometers that covered a spectral range of 370nm to 1200nm. Reflectance spectra were converted to relative absorbance. Absorbance spectra from multiple trials were averaged to produce a representative spectrum for each species. All pathogens studied demonstrated an absorbance spectrum with a primary component in the range 405-426 nm and 1-4 secondary components in the range 445-636 nm. Antibiotic-resistant and antibiotic-sensitive strains of Pseudomonas aeruginosa (Pa) had identical absorbance spectra. Whole-cell spectra support the hypothesis that a pathogen’s absorbance is directly related to efficacy of photoinactivation. The spectral signatures in all pigmented bacteria tested appear to be that of various combinations of in situ porphyrins. The knowledge of the absorption spectrum of a given pathogen provides a logical start for selecting the appropriate light source for a clinical trial.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Salyers AA, Whitt DD. Revenge of the microbes: how bacterial resistance is undermining the antibiotic miracle. Washington, D.C: ASM Press; 2005. 186 p. DOI: https://doi.org/10.1128/9781555817602
Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002;15:167–93. DOI: https://doi.org/10.1128/CMR.15.2.167-193.2002
Olsen I. Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol 2015;34:877–86. DOI: https://doi.org/10.1007/s10096-015-2323-z
Reinisch L. Scatter-limited phototherapy: a model for laser treatment of skin. Lasers Surg Med 2002;30:381–8. DOI: https://doi.org/10.1002/lsm.10046
Reinisch L, Garrett CG, Courey M. A simplified laser treatment planning system: proof of concept. Lasers Surg Med 2013;45:679–85. DOI: https://doi.org/10.1002/lsm.22204
Harris DM, Jacques SL, Darveau R. The Black Bug Myth: Selective photodestruction of pigmented pathogens: THE BLACK BUG MYTH. Lasers Surg Med 2016;48:706–14. DOI: https://doi.org/10.1002/lsm.22545
Fyrestam J, Bjurshammar N, Paulsson E, et al. Influence of culture conditions on porphyrin production in Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis. Photodiagnosis Photodyn Ther 2017;17:115–23. DOI: https://doi.org/10.1016/j.pdpdt.2016.11.001
Pettigrew GW, Moore GR. Cytochromes c: biological aspects. Berlin ; New York: Springer-Verlag; 1987. 282 p. DOI: https://doi.org/10.1007/978-3-642-72698-9
Goodhew CF, Wilson IB, Hunter DJ, Pettigrew GW. The cellular location and specificity of bacterial cytochrome c peroxidases. Biochem J 1990;271:707–12. DOI: https://doi.org/10.1042/bj2710707
Lindig BA, Rodgers MAJ, Schaap AP. Determination of the lifetime of singlet oxygen in water-d2 using 9,10-anthracenedipropionic acid, a water-soluble probe. J Am Chem Soc 1980;102:5590–3. DOI: https://doi.org/10.1021/ja00537a030
Kato H, Komagoe K, Inoue T, et al. Structure–activity relationship of porphyrin-induced photoinactivation with membrane function in bacteria and erythrocytes. Photochem Photobiol Sci 2018;17:954–63. DOI: https://doi.org/10.1039/c8pp00092a
Zhang Y, Zhu Y, Chen J, et al. Antimicrobial blue light inactivation of Candida albicans : In vitro and in vivo studies. Virulence 2016;7:536–45. DOI: https://doi.org/10.1080/21505594.2016.1155015
Leanse LG, Goh XS, Dai T. Quinine improves the fungicidal effects of antimicrobial blue light: implications for the treatment of cutaneous candidiasis. Lasers Surg Med 2020;52:569–75. DOI: https://doi.org/10.1002/lsm.23180
Papageorgiou P, Katsambas A, Chu A. Phototherapy with blue (415 nm) and red (660 nm) light in the treatment of acne vulgaris: blue-red light treatment of acne. Br J Dermatol 2000;142:973–8. DOI: https://doi.org/10.1046/j.1365-2133.2000.03481.x
Trzaska WJ, Wrigley HE, Thwaite JE, May RC. Species-specific antifungal activity of blue light. Sci Rep 2017;7:4605. DOI: https://doi.org/10.1038/s41598-017-05000-0
Wang T, Dong J, Yin H, Zhang G. Blue light therapy to treat candida vaginitis with comparisons of three wavelengths: an in vitro study. Lasers Med Sci 2020;35:1329–39. DOI: https://doi.org/10.1007/s10103-019-02928-9
Rosa LP, da Silva FC, Viana MS, Meira GA. In vitro effectiveness of 455-nm blue LED to reduce the load of Staphylococcus aureus and Candida albicans biofilms in compact bone tissue. Lasers Med Sci 2016;31:27–32. DOI: https://doi.org/10.1007/s10103-015-1826-2
Bumah VV, Masson-Meyers DS, Cashin S, Enwemeka CS. Optimization of the antimicrobial effect of blue light on methicillin-resistant Staphylococcus aureus (MRSA) in vitro: OPTIMIZATION OF THE ANTIMICROBIAL EFFECT. Lasers Surg Med 2015;47:266–72. DOI: https://doi.org/10.1002/lsm.22327
Maclean M, MacGregor SJ, Anderson JG, Woolsey G. High-intensity narrow-spectrum light inactivation and wavelength sensitivity of Staphylococcus aureus. FEMS Microbiol Lett 2008;285:227–32. DOI: https://doi.org/10.1111/j.1574-6968.2008.01233.x
Harris DM, Reinisch L. Selective photoantisepsis: SELECTIVE PHOTOANTISEPSIS. Lasers Surg Med 2016;48:763–73. DOI: https://doi.org/10.1002/lsm.22568
Harris DM, White JM, Goodis H, et al. Selective ablation of surface enamel caries with a pulsed Nd:YAG dental laser. Lasers Surg Med 2002;30:342–50. DOI: https://doi.org/10.1002/lsm.10052
Bergmans L, Moisiadis P, Teughels W, Van Meerbeek B, Quirynen M, Lambrechts P. Bactericidal effect of Nd:YAG laser irradiation on some endodontic pathogens ex vivo. Int Endod J 2006;39:547–57. DOI: https://doi.org/10.1111/j.1365-2591.2006.01115.x
Hatit YB, Blum R, Severin C, et al. The effects of a pulsed Nd:YAG laser on subgingival bacterial flora and on cementum: an in vivo study. J Clin Laser Med Surg 1996;14:137–43. DOI: https://doi.org/10.1089/clm.1996.14.137
Harris DM, McDowell BA, Strisower J. Laser treatment for toenail fungus. In: Kollias N, Choi B, Zeng H, Malek RS, et al., eds. San Jose, CA; 2009. p. 71610M. Available from: http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.810193 DOI: https://doi.org/10.1117/12.810193
Gupta AK, Simpson FC, Heller DF. The future of lasers in onychomycosis. J Dermatol Treat 2016;27:167–72. DOI: https://doi.org/10.3109/09546634.2015.1066479
Wainwright M. Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother 1998;42:13–28. DOI: https://doi.org/10.1093/jac/42.1.13
Karu TI, Kolyakov SF. Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg 2005;23:355–61. DOI: https://doi.org/10.1089/pho.2005.23.355
Ashkenazi H, Malik Z, Harth Y, Nitzan Y. Eradication of Propionibacterium acnes by its endogenic porphyrins after illumination with high intensity blue light. FEMS Immunol Med Microbiol 2003;35:17–24. DOI: https://doi.org/10.1111/j.1574-695X.2003.tb00644.x
Malik Z, Hanania J, Nitzan Y. New trends in photobiology bactericidal effects of photoactivated porphyrins — An alternative approach to antimicrobial drugs. J Photochem Photobiol B 1990;5:281–93. DOI: https://doi.org/10.1016/1011-1344(90)85044-W
Nitzan Y, Wexler HM, Finegold SM. Inactivation of anaerobic bacteria by various photosensitized porphyrins or by hemin. Curr Microbiol 1994;29:125–31. DOI: https://doi.org/10.1007/BF01570752
Meffert H, Gaunitz K, Gutewort T, Amlong UJ. [Therapy of acne with visible light. Decreased irradiation time by using a blue-light high-energy lamp]. Dermatol Monatschrift 1990;176:597–603.
Leanse LG, dos Anjos C, Mushtaq S, Dai T. Antimicrobial blue light: A ‘Magic Bullet’ for the 21st century and beyond? Adv Drug Deliv Rev 2022;180:114057. DOI: https://doi.org/10.1016/j.addr.2021.114057
Halstead FD, Hadis MA, Marley N, et al. Violet-blue light arrays at 405 nanometers exert enhanced antimicrobial activity for photodisinfection of monomicrobial nosocomial biofilms. Appl Environ Microbiol 2019;85:e01346-19. DOI: https://doi.org/10.1128/AEM.01346-19
Smith L. Bacterial cytochromes. Bacteriol Rev 1954;18:106–30. DOI: https://doi.org/10.1128/br.18.2.106-130.1954
Amin RM, Bhayana B, Hamblin MR, Dai T. Antimicrobial blue light inactivation of Pseudomonas aeruginosa by photo-excitation of endogenous porphyrins: In vitro and in vivo studies. Lasers Surg Med 2016;48:562–8. DOI: https://doi.org/10.1002/lsm.22474
Dai T, Gupta A, Huang YY, et al. Blue light rescues mice from potentially fatal Pseudomonas aeruginosa burn infection: efficacy, safety, and mechanism of action. Antimicrob Agents Chemother 2013;57:1238–45. DOI: https://doi.org/10.1128/AAC.01652-12
Ferrer-Espada R, Wang Y, Goh XS, Dai T. Antimicrobial blue light inactivation of microbial isolates in biofilms. Lasers Surg Med 2020;52:472–8. DOI: https://doi.org/10.1002/lsm.23159
Song HH, Lee JK, Um HS, et al. Phototoxic effect of blue light on the planktonic and biofilm state of anaerobic periodontal pathogens. J Periodontal Implant Sci 2013;43:72. DOI: https://doi.org/10.5051/jpis.2013.43.2.72

How to Cite

Harris, D. M. (2023). Spectra of pathogens predict lethality of blue light photo-inactivation. Laser Therapy, 30(1). https://doi.org/10.4081/ltj.2023.314