https://doi.org/10.4081/ltj.2024.391 Effect of laser-activated bleaching with 445, 915, and 970nm diode lasers on enamel color change: an in vitro study PDF Vol. 31 No. 1 (2024) Newsletter Submitted: 9 February 2024 Accepted: 20 May 2024 Published: 13 June 2024 Bleaching, diode laser, tooth color change Abstract Views: 2008 PDF: 119 Publisher's note All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher. Authors Sima Shahabi https://orcid.org/0000-0001-7666-3204 Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran, Islamic Republic of. Alireza Tabatabaeian School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran, Islamic Republic of. Luca Solimei Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Italy. Stefano Benedicenti https://orcid.org/0000-0003-1302-3079 Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Italy. Sogol Saberi saberisogol@gmail.com https://orcid.org/0000-0003-1816-8576 Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran, Islamic Republic of. Abstract Considering the increasing use of esthetic treatments, one of which is bleaching treatment, choosing the different wavelengths and parameters for this treatment can help in choosing the best treatment. Based on this, this study aimed to investigate bleaching with three wavelengths of 445nm, 915nm, and 970 nm on the amount of teeth discoloration. In this study, 77 human permanent teeth without caries were selected and randomly divided into 7 groups as control, 445 nm (1 and 1.5 W and time 20 seconds), 915 nm (2 and 2.5 W and time 30 seconds) and 970 nm (1.5 and 2 W and time 30 seconds). The bleaching gel used was 40% hydrogen peroxide bleaching gel(Ultradent-Opalescence, USA). All groups were subjected to laser irradiation with a 0.5 cm2 area with continuous wave mode radiation at a distance of 1 mm from the bleaching gel. Before starting the study, all the samples were subjected to calorimetry using a spectrophotometer. After bleaching with the said wavelengths, Color change data on the CIE L * a * b* system was analyzed statistically by the one-way ANOVA and Tukey’s HSD test. Based on the findings, ΔE was positive in all groups. The highest amount was in the 445nm 1.5w group and the lowest was seen in the control group and then in the 970nm 2w group (P<0.05). The highest dispersion of color change is related to the 445nm 1.5w group (P<0.05). In general, the results showed that the use of 445nm diode laser 1.5w (ΔE=12) and 970nm diode laser 2w (ΔE=37.5) was the most and least effective in teeth bleaching, respectively. According to the results of the present Invitro study, the 445 nm laser with a power of 1.5 watts had the most effect in changing tooth color, and the 970 nm group with a power of 2 watts showed the least effect. Metrics Dimensions Altmetric PlumX Metrics Downloads Download data is not yet available. Citations References Joiner A, Luo W. Tooth colour and whiteness: A review. J Dent 2017;67s:S3-s10. DOI: https://doi.org/10.1016/j.jdent.2017.09.006 Saberi S, Rouzsaz M, Shafie F, et al. The effect of laser-activated bleaching with 445 nm and 915 nm diode lasers on enamel micro-hardness; an in vitro study, Photodiagnosis Photodyn Ther 2020;31:101952. DOI: https://doi.org/10.1016/j.pdpdt.2020.101952 Ergin E, Ruya Yazici A, Kalender B, et al. Sari, In vitro comparison of an Er:YAG laser-activated bleaching system with different light-activated bleaching systems for color change, surface roughness, and enamel bond strength, Lasers Med Sci 2018;33:1913-8. DOI: https://doi.org/10.1007/s10103-018-2555-0 Saberi S, Shahabi S, Tohidkhah S, et al. The effect of laser-activated bleaching with 445 nm and 970 nm diode lasers on pulp chamber temperature rise: an in vitro study. Laser Physics 2021;31:055601. DOI: https://doi.org/10.1088/1555-6611/abece0 Baik JW, Rueggeberg FA, Liewehr FR. Effect of light-enhanced bleaching on in vitro surface and intrapulpal temperature rise. J Esthetic Restor Dent 2001;13:370. DOI: https://doi.org/10.1111/j.1708-8240.2001.tb01022.x Karkos PD, Koskinas I, Stavrakas M, et al. Diode laser for laryngeal cancer:“980 nm” and beyond the classic CO2. Ear Nose Throat J 2021;100:19S-23S. DOI: https://doi.org/10.1177/0145561320932043 Saeedi R, Omrani LR, Abbasi M, et al. Effect of three wavelengths of diode laser on the efficacy of bleaching of stained teeth. Front Dent 2019;16:458. DOI: https://doi.org/10.18502/fid.v16i6.3445 Sulieman M, Rees J, Addy M. Surface and pulp chamber temperature rises during tooth bleaching using a diode laser: a study in vitro. Br Dental J 2006;200:631-4. DOI: https://doi.org/10.1038/sj.bdj.4813644 Joiner A. The bleaching of teeth: a review of the literature. J Dent 2006;34:412-9. DOI: https://doi.org/10.1016/j.jdent.2006.02.002 Belasco R, Edwards T, Munoz A,et al. The effect of hydration on urine color objectively evaluated in CIE L* a* b* color space. Front Nutr 2020;7:576974. DOI: https://doi.org/10.3389/fnut.2020.576974 Shahabi S, Assadian H, Nahavandi AM, Nokhbatolfoghahaei H. Comparison of tooth color change after bleaching with conventional and different light-activated methods. J Lasers Med Sci 2018;9:27. DOI: https://doi.org/10.15171/jlms.2018.07 Robertson AR. The CIE 1976 color‐difference formulae. Color Res Applicat 1977;2:7-11. DOI: https://doi.org/10.1002/j.1520-6378.1977.tb00104.x Kiomars N, Azarpour P, Mirzaei M, et al. Evaluation of the Diode laser (810nm, 980 nm) on color change of teeth after external bleaching. Laser Therapy 2016;25:267-72. DOI: https://doi.org/10.5978/islsm.16-OR-21 Möbius D, Braun A, Franzen R. Evaluation of tooth color change after a bleaching process with different lasers. Odontology 2024;1-12. DOI: https://doi.org/10.1007/s10266-023-00886-x Rohaninasab M, Alinejad N, Kiomarsi N, Hashemikamangar SS. Efficacy and durability of bleaching with diode lasers: an in vitro study. General Dent 2022;70:35-9. Câmara JVF, Souza LdPPSd, Vargas DOA, et al. Effect of tooth enamel staining by coffee consumption during at-home tooth bleaching with carbamide peroxide. Revista de Odontologia da UNESP 2020;49:e20200024. DOI: https://doi.org/10.1590/1807-2577.02420 Citation / Copyright How to Cite Shahabi, S., Tabatabaeian, A., Solimei, L., Benedicenti, S., & Saberi , S. (2024). Effect of laser-activated bleaching with 445, 915, and 970nm diode lasers on enamel color change: an <i>in vitro</i> study. Laser Therapy, 31(1). https://doi.org/10.4081/ltj.2024.391 More Citation Formats ACM ACS APA ABNT Chicago Harvard IEEE MLA Turabian Vancouver Download Citation Endnote/Zotero/Mendeley (RIS) BibTeX Copyright (c) 2024 the Author(s) This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published. Similar Articles Jiahui Niu, Yupu Li, Yi Ding, Carlo Fornaini, Photobiomodulation for Angina Bullosa Haemorrhagica treatment: a case report , Laser Therapy: Vol. 31 No. 1 (2024) Shimon Rochkind, Phototherapy (photobiomodulation) for peripheral nerve and muscle injury , Laser Therapy: Vol. 30 No. 1 (2023) Hira Ghani, Samavia Khan, Alicia Podwojniak, Fatima N. Mirza, Elizabeth Richards, Odera Ekeh, Erica DeCecco, Khalil Khatri, Adverse effects associated with ablative lasers when treating common dermatologic conditions: a systematic review of 946 patients , Laser Therapy: Vol. 30 No. 2 (2023) Nourhan S. Emam, Ahmed M. Abdelhamid, Lucette G. Segaan, Mohamed Moataz Khamis, Pre-prosthetic atraumatic laser-assisted mandibular rehabilitation: Er,Cr:YSGG 2780 nm for alveoloplasty and mucocele removal. A case report , Laser Therapy: Vol. 31 No. 1 (2024) Ana Elena Aviña, Nguyen Le Thanh Hang Agnes, Chen-Jen Chang, Report on the 3rd International Scientific Meeting on Cosmetic Dermatology incorporated with the International Society for Laser Surgery and Medicine Congress 2023, Bali, Indonesia, June 16th-18th , Laser Therapy: Vol. 30 No. 2 (2023) María José Araujo, Alejandro Carbone, Preliminary application study on LABIELLE (Labial EndoliftX Laser Enhancement) vulvar treatment for labia minora and majora tightening , Laser Therapy: Vol. 31 No. 1 (2024) Monique Ralph, Cameron Hurst, Sheridan Guyatt, Kathleen Goldsmith, E-Liisa Laakso, In post-natal women with nipple pain, does photobiomodulation therapy (PBMT) at 660 nm compared with sham PBMT reduce pain on breastfeeding? A case series during COVID-19 , Laser Therapy: Vol. 30 No. 1 (2023) Hui Chao Wang, Yang Liu, Xiaoxi Tian, Carlo Fornaini, Combined laser, guided bone regeneration and probiotics approach in the treatment of periimplantitis: a case report , Laser Therapy: Vol. 31 No. 2 (2024) Tingwei Zhang, Potential efficacy of fractional CO2 laser in treating port wine stain birthmarks with hypertrophy , Laser Therapy: Vol. 31 No. 2 (2024) Carlo Fornaini, Huichao Wang, YuPu Li, Jean Paul Rocca, Light-Emitting-Diode photochemical effects in dentistry: an overview , Laser Therapy: Vol. 31 No. 1 (2024) << < 1 2 3 4 5 > >> You may also start an advanced similarity search for this article.